Indice del forum Olimpo Informatico
I Forum di Zeus News
Leggi la newsletter gratuita - Attiva il Menu compatto
 
 FAQFAQ   CercaCerca   Lista utentiLista utenti   GruppiGruppi   RegistratiRegistrati 
 ProfiloProfilo   Messaggi privatiMessaggi privati   Log inLog in 

    Newsletter RSS Facebook Twitter Contatti Ricerca
* Basta un dado
Nuovo argomento   Rispondi    Indice del forum -> Enigmi e giochi matematici
Precedente :: Successivo  
Autore Messaggio
Salmastro
Dio minore
Dio minore


Registrato: 13/12/06 19:36
Messaggi: 883
Residenza: Casalmico

MessaggioInviato: 25 Feb 2010 15:08    Oggetto: Rispondi citando

ciao, Nemrod e benvenuto Very Happy

P.S.: rigurado alla tua domanda, credo proprio che la cosa sia assai più elementare Wink
Top
Profilo Invia messaggio privato AIM Yahoo MSN
Jowex
Eroe in grazia degli dei
Eroe in grazia degli dei


Registrato: 15/04/06 14:20
Messaggi: 90

MessaggioInviato: 27 Feb 2010 11:52    Oggetto: Rispondi citando

Citazione:
Ricordando il teorema della probabilità totale per calcolare la somma delle probabilità, possiamo scrivere:

P(il banco vinca) = P(escano al massimo 5 numeri distinti dopo N lanci) =
= P(non esca uno dei 6 numeri dopo N lanci) =
= P(non esca l'1) + P(non esca il 2) + ... + P(non esca il 6)
- P(non escano 1 e 2) - P(non escano 1 e 3) ...
+ P(non escano 1,2,3) + P(non escano 1,2,4) ...
- P(non escano 1,2,3,4) - P(non escano 1,2,3,5) ...
+ P(non escano 1,2,3,4,5) =
= C(6,1) * (5/6)^N - C(6,2) * (4/6)^N + C(6,3) *(3/6)^N - C(6,4) * (2/6)^N + C(6, 5) * (1/6)^N =
= 6(5/6)^N - 15(4/6)^N + 20(3/6)^N - 15(2/6)^N + 6(1/6)^N =
= (6*5^N - 15*4^N + 20*3^N - 15*2^N + 6) / 6^N
(dove C indica il numero di combinazioni)

Partendo da N=6 e calcolando il valore di P, si trovano:
P(6) = 0.9846
P(7) = 0.9460
P(8 ) = 0.8860
P(9) = 0.8110
P(10) = 0.7282
P(11) = 0.6438
P(12) = 0.5622
P(13) = 0.4861

quindi il valore massimo di N a favore del banco è: 12
Top
Profilo Invia messaggio privato
Jowex
Eroe in grazia degli dei
Eroe in grazia degli dei


Registrato: 15/04/06 14:20
Messaggi: 90

MessaggioInviato: 27 Feb 2010 21:18    Oggetto: Rispondi citando

Riprendo l'osservazione e la figura di Nemrod: si tratta proprio di una catena di Markov!
Citazione:
La soluzione si può trovare anche definendo la matrice di transizione P:
P = 1/6 *
- (6)(5)(4)(3)(2)(1)
(6) 6 0 0 0 0 0
(5) 1 5 0 0 0 0
(4) 0
2 4 0 0 0
(3) 0 0 3 3 0 0
(2) 0 0 0 4 2 0
(1) 0 0 0 0 5 1
dove tra parentesi ho messo il nome dello stato, e nelle righe ci sono gli stati di partenza, mentre nelle colonne ci sono gli stati di arrivo
Ogni elemento contiene la probabilità di passare da uno stato all'altro.
Per es: la probab. di passare dallo stato 4 al 5 è di 2/6 (evidenziato in rosso)

Moltiplicando per se stessa N-1 volte la matrice P, possiamo di ricavare le probabilità di trovarci in uno qualunque dei 6 stati dopo N lanci di dadi.
Infatti è sufficiente moltiplicare la matrice ottenuta dopo le moltiplicazioni per il vettore che rappresenta lo stato iniziale: [0 0 0 0 0 0 1] (andrebbe scritto in verticale),
oppure, nel nostro caso, basta prendere il primo elemento dell'ultima riga della matrice.
Per N=12, abbiamo P11 = 1/6^11 *
362797056.000 0.000 0.000 0.000 0.000 0.000
313968931.000 48828125.000 0.000 0.000 0.000 0.000
269335110.000 89267642.000 4194304.000 0.000 0.000 0.000
228718446.000 121849992.000 12051471.000 177147.000 0.000 0.000
191943840.000 147098424.000 23052348.000 700396.000 2048.000 0.000
158838240.000 165528000.000 36690060.000 1730520.000 10235.000 1.000

Per N=13, abbiamo P12 = 1/6^12 *
2176782336.000 0.000 0.000 0.000 0.000 0.000
1932641711.000 244140625.000 0.000 0.000 0.000 0.000
1705278302.000 454726818.000 16777216.000 0.000 0.000 0.000
1494160668.000 633352902.000 48737325.000 531441.000 0.000 0.000
1298761464.000 781596816.000 94310580.000 2109380.000 4096.000 0.000
1118557440.000 901020120.000 151951800.000 5232500.000 20475.000 1.000

E prendendo i primi elementi dell'ultima riga di P11 e P12 otteniamo:
P(di trovarci nello stato 6 dopo 12 lanci) = 158838240/6^11 = 0.4378
P(di trovarci nello stato 6 dopo 13 lanci) = 1118557440/6^12 = 0.5139
che sono proprio le probabilità complementari di P(12) e P(13) riportate nel post precedente.

Per effettuare le moltiplicazioni della matrice ho usato questo link.
Top
Profilo Invia messaggio privato
Salmastro
Dio minore
Dio minore


Registrato: 13/12/06 19:36
Messaggi: 883
Residenza: Casalmico

MessaggioInviato: 28 Feb 2010 19:52    Oggetto: Rispondi citando

@ Jowex:

...non aggiungo niente Wink Very Happy

complimenti & Grazie
Top
Profilo Invia messaggio privato AIM Yahoo MSN
Nemrod
Comune mortale
Comune mortale


Registrato: 24/02/10 17:10
Messaggi: 6

MessaggioInviato: 01 Mar 2010 13:45    Oggetto: Rispondi citando

Jowex ha scritto:
Riprendo l'osservazione e la figura di Nemrod: si tratta proprio di una catena di Markov!


Grazie Jowex, io non ricordavo come fare a formalizzare e risolvere il tutto...
Top
Profilo Invia messaggio privato
ulisse
Dio maturo
Dio maturo


Registrato: 02/03/05 01:09
Messaggi: 1531
Residenza: Bagnone (MS)

MessaggioInviato: 04 Mar 2010 15:55    Oggetto: Errata corrige Rispondi citando

Ti correggo un errore di battitura:

salmastro ha scritto:
suggerimento:

(...) e poi ricavare P come (1-S)/T.

(...)


P=1-S/T mi sembra vada meglio in quanto F=T-S
Top
Profilo Invia messaggio privato HomePage
ulisse
Dio maturo
Dio maturo


Registrato: 02/03/05 01:09
Messaggi: 1531
Residenza: Bagnone (MS)

MessaggioInviato: 04 Mar 2010 20:05    Oggetto: Rispondi citando

salmastro ha scritto:
@ Jowex:

...non aggiungo niente Wink Very Happy

complimenti & Grazie


Senza nulla togliere ai complimenti, aggiungo qualcosina io ovvero che Jowex ha fatto casino con gli indici! TapTap

Nel primo post (soluzione senza uso di catene) chiami P(13) la probabilità che NON escano tutti e sei i numeri in 13 tiri. Hai usato una lettera maiuscola per indicare un numero... deprecated Old ... ma non è importante. L'importante è che la formalizzazione del problema è coerente e il risultato è corretto. Dancing

Nel secondo post (soluzione con catene) arrivi a concludere che:
Citazione:
prendendo i primi elementi dell'ultima riga di P11 e P12 otteniamo:
P(di trovarci nello stato 6 dopo 12 lanci) = 158838240/6^11 = 0.4378
P(di trovarci nello stato 6 dopo 13 lanci) = 1118557440/6^12 = 0.5139
che sono proprio le probabilità complementari di P(12) e P(13) riportate nel post precedente.


MA

1) nel secondo post introduci la matrice di transizione e dichiari che rappresenta le probabilità di trovarsi in uno degli stati possibili dopo un lancio di dado invece P è la matrice delle probabilità di passare da uno stato ad un altro con un singolo lancio. Think
Qual è la differenza? Brick wall avendo escluso lo stato 0 dal tuo modello esso non può essere utilizzato per rappresentare il fenomeno dall'inizio (quando hai 0 numeri distinti estratti) quindi, in buona sostanza, manca un lancio che va aggiunto alla fine dei conti.
Come mai allora i due risultati quadrano nonostante l'errore? ma ovvio, perché hai commesso un secondo errore che ha compensato il primo! GrrrGrrr
Infatti:
2) se è vero che P(di trovarci nello stato 6 dopo 12 lanci) = 158838240/6^11 = 0.4378 non è altrettanto vero che 0.4378 lo trovi in P11 infatti secondo le tue definizioni P11 è la matrice di transizione che contiene la probabilità di passare dallo stato 1 allo stato 6 in 12 lanci (per un totale di 12+1=13 lanci).
0.4378 lo trovi in P10 (10 moltiplicazioni, 11 lanci senza il primo, 12 lanci complessivi).
Ma in P10 non compare quel valore, come fa a quadrare tutto? Semplicemente hai commesso un terzo errore. GrrrGrrrGrrr
Infatti:
3) la formula di calcolo degli elementi di PN (ti rammento che hai scelto di chiamare PN la matrice P moltiplicata per sè stessa N volte) è sbagliata perché il denominatore non è 6^N ma deve essere 6^(N+1) perché moltiplicare un numero per sè stesso N volte significa moltiplicare tra loro N+1 fattori uguali e non N
Ma se io cambio il denominatore ad una frazione senza cambiare adeguatamente anche il numeratore il risultato non è più lo stesso! Come fanno a quadrare i conti? Hai dei dubbi? C'è un quarto errore !GrrrGrrrGrrrGrrr ma consolati... è l'ultimo! Phew
Quando hai dichiarato di calcolare P11 in realtà hai calcolato P10 (provare per credere: controlla il primo elemento in alto a sinistra che secondo le tue definizioni in P11 dovrebbe valere 6^12 invece vale 6^11 e quindi siamo di fronte a P10...)

Detta P la matrice di transizione per un lancio e P^N quella per N lanci (a partire dal secondo!!!) abbiamo che in P^11 la probabilità di passare dallo stato 1 allo stato 6 (con 11+1=12 lanci totali) è 0.4378 ancora a favore del banco mentre in P^12 (con 12+1=13 lanci totali) è 0.5139 ovvero a favore del giocatore.

Ora sì che tutto quadra... CinCin CinCin CinCin


L'ultima modifica di ulisse il 04 Mar 2010 20:30, modificato 1 volta
Top
Profilo Invia messaggio privato HomePage
Salmastro
Dio minore
Dio minore


Registrato: 13/12/06 19:36
Messaggi: 883
Residenza: Casalmico

MessaggioInviato: 04 Mar 2010 20:24    Oggetto: Rispondi citando

ubi maior minor cessat Wink

chapeau, Mr Ulisse! Very Happy

...e grazie per aver corretto il mio piccolo grande errore!
Top
Profilo Invia messaggio privato AIM Yahoo MSN
ulisse
Dio maturo
Dio maturo


Registrato: 02/03/05 01:09
Messaggi: 1531
Residenza: Bagnone (MS)

MessaggioInviato: 04 Mar 2010 22:13    Oggetto: Rispondi

salmastro ha scritto:
ubi maior minor cessat Wink

chapeau, Mr Ulisse! Very Happy

...e grazie per aver corretto il mio piccolo grande errore!


Ehilà Salmastro!
Probabilmente in un'altra vita ero un correttore di bozze...
Tra l'altro noto ora che non era necessario togliere le parentesi. In alternativa sarebbe bastato sostituire 1 con F.

Invece a fare le pulci al ragionamento di Jowex mi sono proprio divertito... come coi miei studenti più bravi...
Mi sono permesso la pignoleria solo perché era quasi perfetto!
Top
Profilo Invia messaggio privato HomePage
Mostra prima i messaggi di:   
Nuovo argomento   Rispondi    Indice del forum -> Enigmi e giochi matematici Tutti i fusi orari sono GMT + 1 ora
Vai a Precedente  1, 2
Pagina 2 di 2

 
Vai a:  
Non puoi inserire nuovi argomenti
Non puoi rispondere a nessun argomento
Non puoi modificare i tuoi messaggi
Non puoi cancellare i tuoi messaggi
Non puoi votare nei sondaggi