Precedente :: Successivo |
Autore |
Messaggio |
ZapoTeX Dio maturo


Registrato: 04/06/04 17:18 Messaggi: 2627 Residenza: Universo conosciuto
|
Inviato: 01 Nov 2008 12:48 Oggetto: |
|
|
Non ho sottomano la formula esatta e non ho voglia di farmi un integrale per ricavarla, ma nelle formule che ho visto c'è qualcosa che non mi convince.
Citazione: | La sfera cava deve avere un momento di inerzia maggiore a pari massa. Non è che la M nelle vostre formule è la densità e non la massa totale? |
|
|
Top |
|
 |
Ranger_Trivette Dio maturo


Registrato: 21/08/07 17:11 Messaggi: 4980 Residenza: Genova
|
Inviato: 01 Nov 2008 13:48 Oggetto: |
|
|
Odos ha scritto: | se mi dite il peso e la grandezza della cavità delle sfere vi posso dire anche a che velocità rotolano data una forza. |
e se mi dice le velocità angolare iniziale e il coeff di attrito dinamico vi posso dire la quantità di calore passata dalla sfera al tavolo!
Citazione: | La sfera cava deve avere un momento di inerzia maggiore a pari massa. Non è che la M nelle vostre formule è la densità e non la massa totale? |
asp, io sono sicuro di quello che dico.
Citazione: | il momento d'inerzia di una sfera cava è 2/3mr^2 mentre quello di una sfera vuota è 2/5mr^2 |
questo è certo. dove r è il raggio e m la massa.
cos'è che non ti torna? |
|
Top |
|
 |
ZapoTeX Dio maturo


Registrato: 04/06/04 17:18 Messaggi: 2627 Residenza: Universo conosciuto
|
Inviato: 01 Nov 2008 16:08 Oggetto: |
|
|
Citazione: | Che intendi per sfera cava e sfera vuota? Che differenza c'è? Se ho capito bene, la vuota ha solo la superficie, mentre la cava è tridimensionale ma ha un buco sferico al centro. In tal caso nella formula dovrebbero comparire due raggi, quello interno e quello esterno, come nelle formule postate da Odos. Però, anche le formule postate da Odos non possono essere giuste perché il momento della sfera cava è più piccolo e non può essere. Tuttavia la mia ipotesi su M che doveva essere la densità non può essere vera, perché le formule di Odos sono dimensionalmente corrette. Vabbeh, ho capito, mi faccio l'integrale e poi riposto la formula! |
|
|
Top |
|
 |
ZapoTeX Dio maturo


Registrato: 04/06/04 17:18 Messaggi: 2627 Residenza: Universo conosciuto
|
Inviato: 01 Nov 2008 16:33 Oggetto: |
|
|
Citazione: | Allora, se non ho fatto capperate nei calcoli, la formula GENERALE per la sfera cava (quella piena è uguale basta mettere r = 0) è
4/5 * pigreco * d * (R^5 - r^5)
dove d è la densità, R il raggio esterno e r quello interno. La formula di Odos per la sfera "piena" ossia di densità uniforme è giusta, perché, detta la massa M, vale:
M =4/3 * d * pigreco * R^3
e quindi si può sostituire e semplificare. Nel caso della sfera cava invece non è possibile, o meglio è possibile, ma non ho nessuna intenzione di mettermi a fare la scomposizione polinomiale della differenza di quinte potenze, ma in ogni caso il risultato non è che banalmente tiri via l'esponente 5 e ci metti il 3.
La formula di Odos per la sfera cava è corretta nel caso in cui le due masse delle due sfere NON sono uguali, ma è uguale la densità e M è definita SEMPRE come la massa della sfera piena, ANCHE nella formula del momento di inerzia di quella CAVA.
In ogni caso, IL MOMENTO DI INERZIA DELLA SFERA CAVA, A PARI MASSA (E NON DENSITA') E' MAGGIORE. Questo si può sperimentare anche nella vita quotidiana. Prendi un filo e due pesi da pesca di piombo. Attaccane uno a un capo del filo, uno a metà e stringi in mano l'altro capo in mano. Fai roteare il filo in aria ed esamina le sensazioni che ti dà. Dopodiché stacca il peso in mezzo e attaccalo vicino all'altro peso, al capo del filo lontano. Ti accorgerai che, quando prende velocità, il filo con i due pesi entrambi lontani dalla tua mano è molto più difficile da fermare.
Per usare una metafora: la formula di Odos è valida nel caso in cui il peso in mezzo non lo sposti all'altra estremità, ma lo togli proprio dal filo. Questo intuitivamente spiega la differenza tra i due casi!
PS: quando ero piccolo, queste cose le facevo veramente (per la gioia dei miei genitori, ironicamente parlando, e del vetraio, stavolta gioia per davvero). Solo più tardi, ovviamente, ho imparato cosa era il momento di inerzia e ho ripensato ai vecchi momenti |
 |
|
Top |
|
 |
Ranger_Trivette Dio maturo


Registrato: 21/08/07 17:11 Messaggi: 4980 Residenza: Genova
|
Inviato: 01 Nov 2008 19:47 Oggetto: |
|
|
Citazione: | scusa errore mio!!! una piccola svista!
volevo scrivere sfera piena e sfera vuota!
allora ti dico i vari momenti di inerzia...
piena: 2/5 m(R^2-r^2)
cava: 2/5 mr^2
guscio sferico: 2/3 mr^2
ovviamente partendo dal presupposto che il materiale sia omogeneo
indipendentemente dalla densità! di questa teniamo già conto avendo massa e raggio
per quanto riguarda il tuo esperimento... nessuno ha mai detto che è maggiore quello della sfera piena. ovviamente quello della sfera cava/gusico sferico sarà maggiore a parità di massa.
ma questo per il semplice fatto che il momento di inerzia di un punto si calcola con l'integrale di r^2 in dm
quindi a parte la mia piccola svista continuo a non capire cosa non ti torni
Citazione: |
La formula di Odos per la sfera cava è corretta nel caso in cui le due masse delle due sfere NON sono uguali, ma è uguale la densità e M è definita SEMPRE come la massa della sfera piena, ANCHE nella formula del momento di inerzia di quella CAVA. |
questa non l'ho mica capita... la sua formula è giusta e m è la massa... |
|
|
Top |
|
 |
ZapoTeX Dio maturo


Registrato: 04/06/04 17:18 Messaggi: 2627 Residenza: Universo conosciuto
|
Inviato: 02 Nov 2008 07:34 Oggetto: |
|
|
Citazione: | C'è una contraddizione in quello che dici:
Citazione: | ovviamente quello della sfera cava/gusico sferico sarà maggiore a parità di massa. |
è incompatibile con le formule che posti. A pari R ed m e con r non nullo ti viene più piccolo il momento di inerzia della sfera cava.
Le formule non possono essere giuste per questo motivo.
Ciao! |
|
|
Top |
|
 |
Odos Eroe in grazia degli dei

Registrato: 01/10/08 15:03 Messaggi: 154 Residenza: Si, risiedo!!
|
Inviato: 02 Nov 2008 12:42 Oggetto: |
|
|
ma infatti state vaneggiando... |
|
Top |
|
 |
Ranger_Trivette Dio maturo


Registrato: 21/08/07 17:11 Messaggi: 4980 Residenza: Genova
|
Inviato: 02 Nov 2008 22:29 Oggetto: |
|
|
porca miseria, ma sono leso? mi stò iniziando a preoccupare... ho sbagliato di nuovo!!!
grrrrrrrrrrrrrrrrrrrrrrrr
allora
momento di una sfera piena I= 2/5 mr^2
momento di un guscio sferico I= 2/3 mr^2
stessa massa stesso raggio Isp < Isc
è questo è giustissimo confermato che il momento di inerzia aumenta con l'aumentare del raggio! è ovvio che integrando una cosa in cui tutta la massa è alla massima distanza venga qualcosa di più grosso di una roba con una distribuzione della massa omogenea!!!
che c'è di strano??? è così punto!!!
non stò vaneggiando! è fisica meccanica classica!
e siccome l'energia cinetica rotazionale di un corpo è 1/2 I omega^2 aumenta all'aumentare di I (oltre della velocità angolare che abbiamo posto uguale per i 2 corpi) è ovvio che a parità di coeff di attrito dinamico la sfera vuota ruoterà di più che quella piena!!!
dimmi tu cosa sbaglio...
tutto quello che ho scritto E' GIUSTO!!! lo dice la fisica, lo dice l'analisi lo dicono gli integrali lo dice chiunque...  |
|
Top |
|
 |
Odos Eroe in grazia degli dei

Registrato: 01/10/08 15:03 Messaggi: 154 Residenza: Si, risiedo!!
|
Inviato: 02 Nov 2008 23:05 Oggetto: |
|
|
io punto 10 ? sul 32 rosso... |
|
Top |
|
 |
ZapoTeX Dio maturo


Registrato: 04/06/04 17:18 Messaggi: 2627 Residenza: Universo conosciuto
|
Inviato: 03 Nov 2008 16:45 Oggetto: |
|
|
Odos, non penso che prendere in giro sia la soluzione migliore. E in ogni caso se c'è qualcuno che vaneggia e spara numeri a caso ti assicuro che non sono io. E, permettimi di aggiungere, fare esternazioni del tipo "Io ho la soluzione" o "Se mi dici questo posso calcolare quello" è un atteggiamento non proprio simpatico, ma forse sono solo io che mi faccio ste pippe mentali perché, a parte quando sono stato provocato, preferisco sempre essere gentile.
Tornando al contenuto, tu scrivi:
Citazione: | iil momento d'inerzia di una sfera è (2/5)*M*R^2, si una sfera cava è (2/5)*M*(R^2-r^2). Quindi la sfera cava avrà un momento di inerzia più piccolo, e di conseguenza avrà un'accellerazione angolare maggiore a parità di forza per la seconda equazione cardinale della dinamica. |
Questo è palesemente sbagliato, non serve nemmeno fare conti per capirlo, la tua affermazione contraddice ogni tipo di intuito. Fare un buco al centro a pari massa (e non a pari densità) equivale a spostare massa dal centro verso l'esterno. Questo aumenta il momento di inerzia, non lo diminuisce. Ti sei mai chiesto perché i volani sono dei dischi sottili con un anello più spesso all'esterno? Perché la ghisa costa e per massimizzare l'inerzia mettendo meno ghisa possibile conviene concentrarla all'esterno. Lo capiresti molto facilmente se pensassi per un attimo al problema fisico invece di copiare e incollare le formule da wikipedia per fare il saputello.
Che poi io non sia bravo a spiegare le cose e forse abbia confuso Ranger Trivette è un altro discuso, e mi scuso con lui. Scusa Ranger! Che poi le formule che ho postato sopra siano giuste, è un altro discorso ancora (anzi ora che ci penso mi sa di no, domani rifaccio i calcoli), ma il concetto viene prima e su quello ho pochi dubbi.
Ciao! |
|
Top |
|
 |
Odos Eroe in grazia degli dei

Registrato: 01/10/08 15:03 Messaggi: 154 Residenza: Si, risiedo!!
|
Inviato: 03 Nov 2008 17:56 Oggetto: |
|
|
mamma mia che simpatico, scusa piccolo cucciolo non volevo offendere la tua immensa personalità... |
|
Top |
|
 |
ZapoTeX Dio maturo


Registrato: 04/06/04 17:18 Messaggi: 2627 Residenza: Universo conosciuto
|
Inviato: 03 Nov 2008 18:43 Oggetto: |
|
|
Non sono offeso, ci vuole ben altro. Ho solo fatto un'osservazione sul tuo modo di comportarti. E comunque vedo che nel tuo ultimo post hai evitato di parlare del momento di inerzia. Metti pure da parte le questioni personali e parliamo del momento di inerzia. O forse non hai voglia di ammettere che avevi torto?
Eh lo so, a fare lo sbruffoncello poi è difficile dire "avevi ragione tu". A essere gentile invece ci si guadagna sempre! Il punto è questo, non certo l'offendere/offendersi!
Ovviamente IMHO come sempre. |
|
Top |
|
 |
Odos Eroe in grazia degli dei

Registrato: 01/10/08 15:03 Messaggi: 154 Residenza: Si, risiedo!!
|
Inviato: 03 Nov 2008 21:47 Oggetto: |
|
|
IMHO? |
|
Top |
|
 |
Odos Eroe in grazia degli dei

Registrato: 01/10/08 15:03 Messaggi: 154 Residenza: Si, risiedo!!
|
Inviato: 03 Nov 2008 21:51 Oggetto: |
|
|
Ps: cmq stai certo che non copio le formule da wikipedia... |
|
Top |
|
 |
madvero Amministratore


Registrato: 05/07/05 21:42 Messaggi: 19507 Residenza: Sono brusco con voi solo perchè il tempo è a sfavore. Penso in fretta, quindi parlo in fretta
|
Inviato: 03 Nov 2008 23:13 Oggetto: |
|
|
imho = in my humble opinion.
comunque ben vengano le diatribe e le dispute fisico/matematiche qui all'olimpo, vi sto leggendo con estremo interesse.
l'importante è non prendersi in giro  |
|
Top |
|
 |
Jenga Semidio


Registrato: 26/04/05 15:20 Messaggi: 250 Residenza: Villa d'Ogna (BG)
|
Inviato: 04 Nov 2008 10:40 Oggetto: |
|
|
Ranger_Trivette ha scritto: | allora
momento di una sfera piena I= 2/5 mr^2
momento di un guscio sferico I= 2/3 mr^2
stessa massa stesso raggio Isp < Isc
|
Ovviamente la seconda formula è un approssimazione quando il raggio del "buco" è circa uguale al raggio della sfera.
Altrimenti compare una differenza tra raggio della sfera e raggio della cavità... |
|
Top |
|
 |
Ranger_Trivette Dio maturo


Registrato: 21/08/07 17:11 Messaggi: 4980 Residenza: Genova
|
Inviato: 04 Nov 2008 14:48 Oggetto: |
|
|
Jenga ha scritto: | Ranger_Trivette ha scritto: | allora
momento di una sfera piena I= 2/5 mr^2
momento di un guscio sferico I= 2/3 mr^2
stessa massa stesso raggio Isp < Isc
|
Ovviamente la seconda formula è un approssimazione quando il raggio del "buco" è circa uguale al raggio della sfera.
Altrimenti compare una differenza tra raggio della sfera e raggio della cavità... |
non è affatto un'approssimazione, piuttosto un passaggio al limite di un integrale... non so parlare gran che bene XD
un guscio sferico può esistere sono nella teoria, in realtà è chiaro che non posso costruire qualcosa in due dimensioni.
@ZapoTech controlla un attimo il mio ragionamento... dovrebbe essere corretto. ovviamente concordo sul fatto che I aumenti nel caso in cui della massa venga allontanata dall'asse di rotazione, su questo no nci piove
@odos ti spiace non spammare in sezioni in cui o.t. non è consentito? grazie. inutile dirti che quello che dici è sbagliato... gli integrali non mentono ma sono sicuro che tu questo lo abbia capito quindi non mi dilungherò oltre... |
|
Top |
|
 |
Jenga Semidio


Registrato: 26/04/05 15:20 Messaggi: 250 Residenza: Villa d'Ogna (BG)
|
Inviato: 06 Nov 2008 11:21 Oggetto: |
|
|
Ranger_Trivette ha scritto: | Jenga ha scritto: | Ranger_Trivette ha scritto: | allora
momento di una sfera piena I= 2/5 mr^2
momento di un guscio sferico I= 2/3 mr^2
stessa massa stesso raggio Isp < Isc
|
Ovviamente la seconda formula è un approssimazione quando il raggio del "buco" è circa uguale al raggio della sfera.
Altrimenti compare una differenza tra raggio della sfera e raggio della cavità... |
non è affatto un'approssimazione, piuttosto un passaggio al limite di un integrale... non so parlare gran che bene XD
|
Quindi è un approssimazione: il guscio sferico, come il punto materiale, è un "oggetto teorico" che nella realtà non esiste, ma risulta comodissimo per fare i calcoli.
Nella realtà lo spessore del materiale nella sfera cava non può ridursi a un infinitesimo (dovremmo avere un materiale di densità infinita...).
In pratica stiamo dicendo la stessa cosa...  |
|
Top |
|
 |
stebil Mortale pio

Registrato: 10/10/08 09:11 Messaggi: 21 Residenza: Svizzera
|
Inviato: 19 Nov 2008 09:34 Oggetto: |
|
|
Come fanno ad essere visivamente uguali le due sfere? La sfera cava per sua definizione ha un buco in mezzo!
Essendo la sfera cava vuota al suo interno, la massa (per meglio dire il peso) dei due solidi non può essere uguale e, a dipendenza del buco, neppure il volume potrebbe essere lo stesso.
A mio parere le premesse del problema sono errate, oppure parliamo di una sfera cava non convenzionale. |
|
Top |
|
 |
fracama87 Eroe in grazia degli dei

Registrato: 11/07/08 20:07 Messaggi: 123
|
Inviato: 19 Nov 2008 10:26 Oggetto: |
|
|
stebil ha scritto: | Come fanno ad essere visivamente uguali le due sfere? La sfera cava per sua definizione ha un buco in mezzo!
Essendo la sfera cava vuota al suo interno, la massa (per meglio dire il peso) dei due solidi non può essere uguale e, a dipendenza del buco, neppure il volume potrebbe essere lo stesso.
A mio parere le premesse del problema sono errate, oppure parliamo di una sfera cava non convenzionale. |
mi sono posto da subito la stessa domanda...  |
|
Top |
|
 |
|